Python Warm Up
Python Exercise on Google Colab
2 minute read
Python Exercise on Google Colab
View in Github | Download Notebook |
In this exercise, we will take a look at some basic Python Concepts needed for day-to-day coding.
Check the installed Python version.
! python --version
Python 3.7.6
Simple For Loop
for i in range(10):
print(i)
0
1
2
3
4
5
6
7
8
9
List
list_items = ['a', 'b', 'c', 'd', 'e']
Retrieving an Element
list_items[2]
'c'
Append New Values
list_items.append('f')
list_items
['a', 'b', 'c', 'd', 'e', 'f']
Remove an Element
list_items.remove('a')
list_items
['b', 'c', 'd', 'e', 'f']
Dictionary
dictionary_items = {'a':1, 'b': 2, 'c': 3}
Retrieving an Item by Key
dictionary_items['b']
2
Append New Item with Key
dictionary_items['c'] = 4
dictionary_items
{'a': 1, 'b': 2, 'c': 4}
Delete an Item with Key
del dictionary_items['a']
dictionary_items
{'b': 2, 'c': 4}
Comparators
x = 10
y = 20
z = 30
x > y
False
x < z
True
z == x
False
if x < z:
print("This is True")
This is True
if x > z:
print("This is True")
else:
print("This is False")
This is False
Arithmetic
k = x * y * z
k
6000
j = x + y + z
j
60
m = x -y
m
-10
n = x / z
n
0.3333333333333333
Numpy
Create a Random Numpy Array
import numpy as np
a = np.random.rand(100)
a.shape
(100,)
Reshape Numpy Array
b = a.reshape(10,10)
b.shape
(10, 10)
Manipulate Array Elements
c = b * 10
c[0]
array([3.33575458, 7.39029235, 5.54086921, 9.88592471, 4.9246252 ,
1.76107178, 3.5817523 , 3.74828708, 3.57490794, 6.55752319])
c = np.mean(b,axis=1)
c.shape
10
print(c)
[0.60673061 0.4223565 0.42687517 0.6260857 0.60814217 0.66445627
0.54888432 0.68262262 0.42523459 0.61504903]
Last modified
June 17, 2021
: add aliasses (6b7beab5)